The challenge
Consider the sequence U(n, x) = x + 2x**2 + 3x**3 + .. + nx**n
where x is a real number and n a positive integer.
When n
goes to infinity and x
has a correct value (ie x
is in its domain of convergence D
), U(n, x)
goes to a finite limit m
depending on x
.
Usually given x
we try to find m
. Here we will try to find x
(x real, 0 < x < 1) when m
is given (m real, m > 0).
Let us call solve
the function solve(m)
which returns x
such as U(n, x) goes to m
when n
goes to infinity.
Examples:
solve(2.0) returns 0.5
since U(n, 0.5)
goes to 2
when n
goes to infinity.
solve(8.0) returns 0.7034648345913732
since U(n, 0.7034648345913732)
goes to 8
when n
goes to infinity.
Note:
You pass the tests if abs(actual - expected) <= 1e-12
The solution in Kotlin code
Option 1:
package solv
fun solve(m:Double):Double {
val s = Math.sqrt(4 * m + 1)
return (2 * m + 1 - s) / (2 * m)
}
Option 2:
package solv
import kotlin.math.sqrt
fun solve(m: Double): Double = 1 + (0.5 - sqrt(0.25 + m)) / m
Option 3:
package solv
fun solve(s:Double):Double {
return (1 - Math.sqrt(4 * s + 1)) / (2.0 * s) + 1;
}
Test cases to validate our solution
package solv
import org.junit.Assert.*
import org.junit.Test
import java.util.Random
class solvTest {
private fun assertFuzzy(m:Double, expect:Double) {
val merr = 1e-12
println("Testing " + m)
val actual = solve(m)
println("Actual: " + actual)
println("Expect: " + expect)
val inrange = Math.abs(actual - expect) <= merr
if (inrange == false)
{
println("Expected must be near " + expect + ", got " + actual)
}
println("-")
assertEquals(true, inrange)
}
@Test
fun test1() {
assertFuzzy(2.00, 5.000000000000e-01)
assertFuzzy(4.00, 6.096117967978e-01)
assertFuzzy(5.00, 6.417424305044e-01)
}
}