Self Dividing Numbers Using Python


Introduction

self-dividing number is a number that is divisible by every digit it contains.

For example, 128 is a self-dividing number because 128 % 1 == 0128 % 2 == 0, and 128 % 8 == 0.

Also, a self-dividing number is not allowed to contain the digit zero.

Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.

Example 1:

Input: 
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]

**Note:**The boundaries of each input argument are 1 <= left <= right <= 10000.

Solution

# The method where all the logic lives
def selfDividingNumbers(left, right):

    # An internal function
    def self_dividing(n):
        # loop through each `n`
        for d in str(n):
            # if it's the first item, or there's no remainder
            if d == '0' or n % int(d) > 0:
                # False
                return False
        # True
        return True

    # Create an `output` to push to
    out = []
    # loop through all items, from the left to the right, inclusive
    for n in range(left, right + 1):
        # if we get a True
        if self_dividing(n):
            # push to the output
            out.append(n)

    #Equals filter(self_dividing, range(left, right+1))
    return out