If you need to normalize a list of numbers in Python, then you can do the following:
Option 1 – Using Native Python
list = [6,1,0,2,7,3,8,1,5]
print('Original List:',list)
xmin = min(list)
xmax=max(list)
for i, x in enumerate(list):
list[i] = (x-xmin) / (xmax-xmin)
print('Normalized List:',list)
Option 2 – Using MinMaxScaler
from sklearn
import numpy as np
from sklearn import preprocessing
list = np.array([6,1,0,2,7,3,8,1,5]).reshape(-1,1)
print('Original List:',list)
scaler = preprocessing.MinMaxScaler()
normalizedlist=scaler.fit_transform(list)
print('Normalized List:',normalizedlist)
You can also specify the range
of the MinMaxScaler()
.
import numpy as np
from sklearn import preprocessing
list = np.array([6,1,0,2,7,3,8,1,5]).reshape(-1,1)
print('Original List:',list)
scaler = preprocessing.MinMaxScaler(feature_range=(0, 3))
normalizedlist=scaler.fit_transform(list)
print('Normalized List:',normalizedlist)