The challenge
Given the root
of a binary tree, find the maximum value V
for which there exist different nodes A
and B
where V = |A.val - B.val|
and A
is an ancestor of B
.
A node A
is an ancestor of B
if either: any child of A
is equal to B
, or any child of A
is an ancestor of B
.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13] Output: 7 Explanation: We have various ancestor-node differences, some of which are given below : |8 - 3| = 5 |3 - 7| = 4 |8 - 1| = 7 |10 - 13| = 3 Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3] Output: 3
Constraints:
- The number of nodes in the tree is in the range
[2, 5000]
. 0 <= Node.val <= 10<sup>5</sup>
Definition for a Binary Tree Node
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode() {}
TreeNode(int val) { this.val = val; }
TreeNode(int val, TreeNode left, TreeNode right) {
this.val = val;
this.left = left;
this.right = right;
}
}
The solution in Java code
class Solution {
public int maxAncestorDiff(TreeNode root) {
if (root == null) return 0;
return helper(root, root.val, root.val);
}
public int helper(TreeNode node, int curMax, int curMin) {
// if encounter leaves, return the max-min along the path
if (node == null) return curMax - curMin;
// otherwise: update max and min and..
// return the max of left and right subtrees
curMax = Math.max(curMax, node.val);
curMin = Math.min(curMin, node.val);
int left = helper(node.left, curMax, curMin);
int right = helper(node.right, curMax, curMin);
return Math.max(left, right);
}
}