The challenge
Let’s call any (contiguous) subarray B (of A) a mountain if the following properties hold:
B.length >= 3
- There exists some
0 < i < B.length - 1
such thatB[0] < B[1] < ... B[i-1] < B[i] > B[i+1] > ... > B[B.length - 1]
(Note that B could be any subarray of A, including the entire array A.)
Given an array A
of integers, return the length of the longest mountain.
Return `` if there is no mountain.
Example 1:
Input: [2,1,4,7,3,2,5] Output: 5 Explanation: The largest mountain is [1,4,7,3,2] which has length 5.
Example 2:
Input: [2,2,2] Output: 0 Explanation: There is no mountain.
Note:
0 <= A.length <= 10000
0 <= A[i] <= 10000
Follow up:
- Can you solve it using only one pass?
- Can you solve it in
O(1)
space?
The solution in Java code
class Solution {
public int longestMountain(int[] A) {
int N = A.length;
int answer = 0, base = 0;
while (base < N) {
int end = base;
if (end + 1 < N && A[end] < A[end + 1]) {
while (end + 1 < N && A[end] < A[end + 1]) end++;
if (end + 1 < N && A[end] > A[end + 1]) {
while (end + 1 < N && A[end] > A[end + 1])
end++;
answer = Math.max(answer, end - base + 1);
}
}
base = Math.max(end, base + 1);
}
return answer;
}
}