## The challenge

Create a function that finds the integral of the expression passed.

In order to find the integral all you need to do is add one to the `exponent` (the second argument), and divide the `coefficient` (the first argument) by that new number.

For example for `3x^2`, the integral would be `1x^3`: we added 1 to the exponent, and divided the coefficient by that new number).

Notes:

• The output should be a string.
• The coefficient and exponent is always a positive integer.

### Examples

 ``````1 2 3 4 5 `````` `````` 3, 2 --> "1x^3" 12, 5 --> "2x^6" 20, 1 --> "10x^2" 40, 3 --> "10x^4" 90, 2 --> "30x^3" ``````

## The solution in Java code

 `````` 1 2 3 4 5 6 7 8 9 10 `````` ``````public class Solution { public static String integrate(int coefficient, int exponent) { int first = ++exponent; coefficient /= first; return coefficient+"x^"+first; } } ``````

A single line solution:

 ``````1 2 3 4 5 6 7 `````` ``````public class Solution { public static String integrate(int coefficient, int exponent) { return coefficient / ++exponent + "x^" + exponent; } } ``````

A solution using `String.format()`:

 ``````1 2 3 4 5 6 7 `````` ``````class Solution { static String integrate(int coefficient, int exponent) { return String.format("%sx^%s", coefficient / ++exponent, exponent); } } ``````

## Test cases to validate our Java solution code

 `````` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 `````` ``````import org.junit.Test; import static org.junit.Assert.assertEquals; import org.junit.runners.JUnit4; public class SolutionTest { @Test public void exampleTests() { assertEquals("1x^3", Solution.integrate(3,2)); assertEquals("2x^6", Solution.integrate(12,5)); assertEquals("10x^2", Solution.integrate(20,1)); assertEquals("10x^4", Solution.integrate(40,3)); assertEquals("30x^3", Solution.integrate(90,2)); } } ``````