## The challenge

Your task is to create function`isDivideBy` (or `is_divide_by`) to check if an integer number is divisible by each out of two arguments.

A few cases:

 ``````1 2 3 4 5 6 7 8 `````` ``````(-12, 2, -6) -> true (-12, 2, -5) -> false (45, 1, 6) -> false (45, 5, 15) -> true (4, 1, 4) -> true (15, -5, 3) -> true ``````

## Test cases

 ``````1 2 3 4 5 6 7 8 `````` ``````Test.describe("Basic Tests") Test.it("should pass basic tests") Test.assert_equals(is_divide_by(-12, 2, -6), True) Test.assert_equals(is_divide_by(-12, 2, -5), False) Test.assert_equals(is_divide_by(45, 1, 6), False) Test.assert_equals(is_divide_by(45, 5, 15), True) Test.assert_equals(is_divide_by(4, 1, 4), True) Test.assert_equals(is_divide_by(15, -5, 3), True) ``````

## Understanding how to solve this

To resolve this problem, we need to understand how to find if a number can be divided without a remainder in Python.

For this we will use Python’s `modulo operator`, (`%`):

 ``````1 2 3 4 5 `````` ``````10 % 5 # 0 # if we divide 10 by 5, there is no remainder 10 % 3 # 1 # if we divide 10 by 3, there is a remainder of `1` ``````

Therefore, if we say `10 % 5 == 0`, the expression will equal `True`, while the `10 % 3 == 0` will equal False. This is because there is a remainder of `1` in the second instance.

## The solution in Python

Option 1:

 ``````1 2 3 4 5 6 `````` ``````def is_divide_by(number, a, b): # if can divide without remainder if number % a ==0 and number % b ==0: return True else: return False ``````

Option 2:

 ``````1 2 `````` ``````def is_divide_by(number, a, b): return not (number%a or number%b) ``````

Option 3:

 ``````1 2 `````` ``````def is_divide_by(n, a, b): return n%a == 0 == n%b ``````