The challenge
Given the coordinates of four points in 2D space p1
, p2
, p3
and p4
, return true
if the four points construct a square.
The coordinate of a point p<sub>i</sub>
is represented as [x<sub>i</sub>, y<sub>i</sub>]
. The input is not given in any order.
A valid square has four equal sides with positive length and four equal angles (90-degree angles).
Example 1:
Input: p1 = [0,0], p2 = [1,1], p3 = [1,0], p4 = [0,1] Output: true
Example 2:
Input: p1 = [0,0], p2 = [1,1], p3 = [1,0], p4 = [0,12] Output: false
Example 3:
Input: p1 = [1,0], p2 = [-1,0], p3 = [0,1], p4 = [0,-1] Output: true
Constraints:
p1.length == p2.length == p3.length == p4.length == 2
-10<sup>4</sup> <= x<sub>i</sub>, y<sub>i</sub> <= 10<sup>4</sup>
The solution in Java code
class Solution {
public double dist(int[] p1, int[] p2) {
return (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[0] - p1[0]) * (p2[0] - p1[0]);
}
public boolean validSquare(int[] p1, int[] p2, int[] p3, int[] p4) {
int[][] p={p1,p2,p3,p4};
Arrays.sort(p, (l1, l2) -> l2[0] == l1[0] ? l1[1] - l2[1] : l1[0] - l2[0]);
return dist(p[0], p[1]) != 0 && dist(p[0], p[1]) == dist(p[1], p[3]) && dist(p[1], p[3]) == dist(p[3], p[2]) && dist(p[3], p[2]) == dist(p[2], p[0]) && dist(p[0],p[3])==dist(p[1],p[2]);
}
}