The challenge
Consider the sequence S(n, z) = (1 - z)(z + z**2 + z**3 + ... + z**n)
where z
is a complex number and n
a positive integer (n > 0).
When n
goes to infinity and z
has a correct value (ie z
is in its domain of convergence D
), S(n, z)
goes to a finite limit lim
depending on z
.
Experiment with S(n, z)
to guess the domain of convergence D
of S
and lim
value when z
is in D
.
Then determine the smallest integer n
such that abs(S(n, z) - lim) < eps
where eps
is a given small real number and abs(Z)
is the modulus or norm of the complex number Z.
Call f
the function f(z, eps)
which returns n
. If z
is such that S(n, z)
has no finite limit (when z
is outside of D
) f
will return -1.
Examples:
I is a complex number such as I * I = -1 (sometimes written i
or j
).
f(0.3 + 0.5 * I, 1e-4) returns 17
f(30 + 5 * I, 1e-4) returns -1
Remark:
For languages that don’t have complex numbers or “easy” complex numbers, a complex number z
is represented by two real numbers x
(real part) and y
(imaginary part).
f(0.3, 0.5, 1e-4) returns 17
f(30, 5, 1e-4) returns -1
Note:
You pass the tests if abs(actual - exoected) <= 1
The solution in Kotlin
Option 1:
package solv
private fun modul(x: Double, y: Double): Double {
if (x != 0.0 || y != 0.0)
return Math.sqrt(x * x + y * y)
else
return 0.0
}
fun f(x: Double, y: Double, eps: Double): Int {
if (modul(x, y) >= 1.0)
return -1
return (Math.log(eps) / Math.log(modul(x, y))).toInt()
}
Option 2:
package solv
import kotlin.math.*
fun f(x: Double, y: Double, eps: Double): Int {
val m = hypot(x, y)
return if (m < 1) log(eps, m).toInt() else -1
}
Option 3:
package solv
fun f(x: Double, y: Double, eps: Double): Int {
val res = Math.log(eps) / Math.log(Math.hypot(x, y))
return if (res < 0) -1 else res.toInt()
}
Test cases to validate our solution
package solv
import org.junit.Assert.*
import org.junit.Test
import java.util.Random
class solvTest {
private fun dotest(x:Double, y: Double, eps: Double, expect: Int) {
val merr = 1.0
println("Testing " + x + " " + y + " " + eps)
val actual = f(x, y, eps)
println("Actual: " + actual)
println("Expect: " + expect)
val inrange = Math.abs(actual - expect) <= merr
if (inrange == false)
{
println("Expected must be near " + expect + ", got " + actual)
}
println("-")
assertEquals(true, inrange)
}
@Test
fun test1() {
dotest(0.64, 0.75, 1e-12, 1952)
dotest(0.3, 0.5, 1e-4, 17)
dotest(30.0, 50.0, 1e-4, -1)
}
}